15E(A)

MATHEMATICS, Paper - I

(English version)

Parts A and B

Time: 21/2 Hours

|Maximum Marks: 50

Instructions:

- Answer the questions under Part-A on a separate answer book.
- 2. Write the answers to the questions under Part-B on the Question paper itself and attach it to the answer book of Part-A.

Part - A

Time: 2 Hours

Marks: 35

SECTION - I

 $(Marks: 5 \times 2 = 10)$

Note:

- Answer ANY FIVE questions, choosing at least TWO from each of the following Groups, i.e., A and B.
- 2. Each question carries 2 marks.

GROUP - A

(Real numbers, Sets, Polynomials, Quadratic Equations)

- 1. Expand $\log \frac{343}{125}$.
- 2. Draw the Venn diagrams of the sets (A-B), (B-A).
- 3. Find a quadratic polynomial, if the zeroes of it are 2 and -1 respectively.
- **4.** Find the roots of the equation $2x^2 + x 6 = 0$ by factorisation.

15E(A)

[1]

P.T.O.

GROUP - B

(Pair of Linear equations in two variables, Progressions, Co-ordinate Geometry)

- 5. 10 students of class X took part in a mathematics quiz. If the number of girls is four more than the number of boys; then find the number of boys and the number of girls, who took part in the quiz.
- 6. Find the number of terms in the following AP 7, 13, 19,, 205
- 7. Find the coordinates of the point, which divides the join of (-1, 7) and (4, -3) in the ratio 2:3.
- 8. Find the area of the triangle, whose vertices are (2, 0), (1, 2), (-1, 6). What do you observe?

SECTION - II

 $(Marks: 4\times 1=4)$

Note:

- Answer ANY FOUR of the following SIX questions.
- 2. Each question carries 1 mark.
- 9. Find the value of $\log_{81} 3$.
- 10. List all the subsets of the following set $B = \{p, q\}$.
- 11. Write the following set $\{x : x = 2n + 1 \text{ and } n \in \mathbb{N}\}$ in roster form.
- 12. If $p(x) = x^2 5x 6$; find the value of p(3).
- 13. Find the common ratio of GP

$$2, 2\sqrt{2}, 4, \dots$$

14. Find the mid point of the line segment joining the points (2, 7) and (12, -7).

15E(A)

W

$(Marks: 4\times4=16)$

Note:

1. Answer ANY FOUR questions, choosing at least TWO from each of the following Groups, i.e., A and B.

2. Each question carries 4 marks.

GROUP - A

(Real Numbers, Sets, Polynomials, Quadratic Equations)

15. Show that $5-\sqrt{3}$ is irrational.

16. If $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 3, 5, 6\}$, then find (i) $A \cap B$, (ii) $B \cap A$, (iii) A - B, (iv) B - A, and what do you observe?

17. Find the zeroes of the polynomial $p(x) = x^2 - 4x + 3$ and verify the relationship between zeroes and coefficients.

18. Solve the quadratic equation $2x^2 + x - 4 = 0$ by completing the square.

GROUP - B

(Pair of Linear equations in two variables, Progressions, Co-ordinate Geometry)

19. Solve the equations.

$$\frac{10}{x+y} + \frac{2}{x-y} = 4$$
, $\frac{15}{x+y} - \frac{5}{x-y} = -2$

20. Solve the pair of equations by Elimination method.

$$2x + y - 5 = 0$$
, $3x - 2y - 4 = 0$

21. If the sum of the first 7 terms of an AP is 49 and that of 17 terms is 289; find the sum of the first n terms.

22. Find the area of the triangle formed by joining the mid points of the sides of the triangle, whose vertices are (0, -1); (2, 1) and (0, 3). Find the ratio of this area to the area of the given triangle.

(Polynomials, Pair of Linear equations in two variables)

Note:

- 1. Answer ANY ONE question from the following.
- 2. This question carries 5 marks.
- 23. Draw the graph of $p(x) = x^2 + 3x 4$ and find zeroes. Verify the zeroes of the polynomials.
- 24. Solve the following equations graphically.

$$3x - y = 7,$$

$$2x + 3y = 1$$

15E(B)

MATHEMATICS, Paper - I

(English version)

Parts A and B

Time: 2½ Hours]

[Maximum Marks: 50

Instructions:

Write the answers to the questions under Part-B on the Question paper itself and attach it to the answer book of Part-A.

	-				Cheylan		
		T.	art -	В			
Tim	e : 30) minutes			11	Marks	: 15
Not	e:						
	1.	Each question carries 1/2 n	nark.	o= a_ *		2	
	2.	Answers are to be written	in the C	Question paper only.			
	3.	Answer all the questions.			77	- 17	
	4.	Marks will not be awarded	l in case	e of any over-written	, re-wr	itten or	
		erased answers.					
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		107			
I.		te the CAPITAL LETTER s			or the	10 . l	/ -
	follo	wing questions in the brack	ets pro	vided against them.		10 × ½	2 = 0
1.	If p	is prime, then \sqrt{p} is				1]
	(A)	Composite number	(B)	Rational number	¥3		180
	(C)	Positive integer	(D)	Irrational number	28		Œ.
2.	Exp	onential form of $\log_4 8 = x$	is		b	ſ	.]
	(A)	$x^8 = 4$	(B)	$x^4 = 8$			
	(C)	$4^x = 8$	(D)	$8^x = 4$			
	S.			*			21 12
3.	If $\log 625 = k \log 5$, then the value of k is]
	(A)	5	(B)	4			
	(C)	3	(D)	2			
15E(B)			[1]	* =		P.	T.O.
W	25	Ť	¥2				

	p s sooms:		r	
4,	$\frac{P}{q}$ form of 0.0875 is		I	. 1
	7		14	
	(A) $\frac{7}{2^4 \times 5}$ (B) $\frac{7}{2 \times 5^4}$			
		F2 #2	3	
	(C) $\frac{7}{2^4 \times 5^4}$ (D) $\frac{5^3 \times 7}{2^3 \times 5^4}$			
	2 10			
5.	If $A \subset B$, $n(A) = 5$ and $n(B) = 7$, then $n(A \cup B) =$	****	1	1
	(A) 5 (B) 7		(E)	8
33 m	(C) 2 (D) 12			
				: 1
6.	If 2 and 3 are two zeroes of $x^3 - 5x^2 + 6x$,			
	then find the third zero	3 1	Į.]
	(A) 1 (B) 4	4		
	(C) 5 (D) 0			
7.	Which is not a linear equation of the following?	*	[.]
	(A) $5 + 4x = y + 3$	SERVICE CONTRACTOR		
	(B) x + 2y = y - x	The second		
	(C) $3-x=y^2+4$		ř.,	
	(D) x + y = 0			
	as t			
8.	Two angles are complementary. If the larger angle			754
	is twice the measure of a smaller angle, then smalle	er is	ľ]
	(A) 30° (B) 45°	En la	4	
	(C) 60° (D) 15°			
9.	The common difference of AP 1, -1 , -3 , is.	ion .	[]
	(A) -1 (B) +2			*
	(C) -2 (D) +1			
	E(B) [2]			18
W	*	88 H.C		

S 61 V

*

201

10. Distance between (0, 7) and (-7, 0) is

- 1

(A) $2\sqrt{7}$

(B) $7\sqrt{2}$

(C) $\sqrt{14}$

- (D) +1
- II. Fill in the blanks with suitable answers.

 $10 \times \frac{1}{2} = 5$

- 11. Decimal form of $\frac{36}{2^3 \times 5^3}$ value is
- 12. If L.C.M. and H.C.F. of two numbers are 108 and 9 respectively and one of them is 54; then other number is
- 13. If $\log_2 x = 3$, then $x = \dots$
- 14. If $\frac{52}{160} = \frac{13}{2^n \times 5^m}$, then $m + n = \dots$
- 15. If the polynomial $p(x) = x^2 8x + k$ is divided by (x 1), the remainder comes out to be '6', then k is
- 16. The discriminant of the Quadratic equation $px^2 + qx + r = 0$ is
- 17. The first negative number of AP; 14, 11, 8, is term.
- 18. Intersecting point of x + y = 6, x y = 4 is
- 20. Slope of Y-axis is

15E(B)

HI.	Find the correct answer for the questions given under Group-A selecting them from Group-B and write the indicating letter in the brackets provided against						
	each question.		N	$10 \times \frac{1}{2} = 5$			
(i)	Group - A		Grou	p - B			
21.	The zero of linear polynomial $ax - b = \dots$	\mathbf{L}_{ij} . \mathbf{L}_{ij}	(A) (B) -) -2			
22.	If the product of zeroes is '0' of the polynomial $ax^2 + bx + c$, then the value of c is	I	(C) -	<u>5</u>			
23.	Product of the zeroes of the polynomial $2x^2-3x+6$ is	The Community of the Co	(D) (E) 2	1			
24.	Sum of the zeroes of the polynomial $bx^2 + ax + c = \dots$	t 1	(F).	<u>a.</u> y			
25.	α , β , γ are the zeroes of the polynomial $x^3 + 3x^2 - x + 2$, then $\alpha \beta \gamma$ is	$\mathbf{I} = 1$	(G) - (H) ($-rac{b}{a}$			
(ii)	Group - A		Grou	p - B			
26.	Distance between X-axis and (-4, 3) is	[]	(I) (J)	√5 (1.1)			
27.	Distance between origin and (2, 3) is	1	(K)				
28.	Distance between Y-axis and (4, 0) is		(L) . :				
29.	Mid point of line joining the points $(2,3)$ and $(-2,3) = \dots$	E 1		, √13			
30.	Centroid of a triangle, whose vertices are	1 1		0, 0)			
15E W	(0, 3); (3, 0); (0, 0) is (B)	[4]		0, 3) MARCH, 2016			